Abstract

We have studied the local structure of a Ba(Fe(1-x)Co(x))2As2 superconductor using temperature dependent extended X-ray absorption fine structure (EXAFS) measurements. Polarized EXAFS at the Fe K-edge on an optimally doped (x = 0.06) single crystal has permitted us to determine atomic displacements across the superconducting transition temperature (T(c)). The Fe-As bondlength hardly shows any change with temperature; however, the Fe-Fe sublattice reveals a sharp anomaly across T(c), indicated by a significant drop in mean square relative displacements, similar to the one known for cuprates and A15-type superconductors. We have also found a large atomic disorder around the substituted Co, revealed by polarized Co K-edge EXAFS measurements. The Co-Fe/Co bonds are more flexible than the Fe-Fe bonds with the As-height in Co-containing tetrahedra being larger than the one in FeAs4. The results suggest that the local Fe-Fe bondlength fluctuations and the atomic disorder in this sub-lattice should have some important role in the superconductivity of Ba(Fe(1-x)Co(x))2As2 pnictides.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.