Abstract

Current architecture of many computer systems relies on dynamic allocation of a pool of resources according to workload conditions to meet specific performance objectives while minimizing cost (e.g., energy or billing). In such systems, different levels of operation may be defined, and switching between operating levels occurs at certain thresholds of system congestion. To avoid rapid oscillations between levels of service, “hysteresis” is introduced by using different thresholds for increasing and decreasing workload levels, respectively. We propose a model of such systems with general arrivals, arbitrary number of servers and operating levels where each higher operating level may correspond to an arbitrary number of additional servers and soft (i.e., non-deterministic) thresholds to account for “inertia” in switching between operating levels. In our model, request service times are assumed to be memoryless and server processing rates may be a function of the current operating level and of the number of requests (users) in the system. Additionally, we allow for delays in the activation of additional operating levels. We use simple mathematics to obtain a semi-numerical solution of our model. We illustrate the versatility of our model using several case study examples inspired by features of real systems. In particular, we explore optimal thresholds as a tradeoff between performance and energy consumption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call