Abstract

The Monte Carlo (MC) method exhibits generality and insensitivity to the number of stochastic variables, but is expensive for accurate yield estimation of electronic circuits. In the literature, several variance reduction techniques have been described, e.g., stratified sampling. In this contribution the theoretical aspects of the partitioning scheme of the tolerance region in stratified sampling is presented. Furthermore, a theorem about the efficiency of this estimator over the primitive MC (PMC) estimator versus sample size is given. To the best of our knowledge, this problem was not previously studied in parametric yield estimation. In this method we suppose that the components of parameter disturbance space are independent or can be transformed to an independent basis. The application of this approach to a numerical example (Rosenbrock's curved-valley function) and a circuit example (Sallen-Key low-pass filter) are given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.