Abstract

In order to explore how the ubiquitous stochastic low-frequency (SLF) variability of O-type stars is related to various stellar characteristics, we compiled a sample of 150 O-type stars observed via ground-based spectroscopic surveys, alongside photometric data obtained from the Transiting Exoplanet Survey Satellite (TESS). We analyzed 298 light curves obtained from TESS Sectors 1–65 for the stars in our sample. Leveraging the spectroscopic parameters, we used Bonnsai to determine masses, radii, fractional main-sequence ages, and mass-loss rates for stars of our sample. Subsequently, we identified possible correlations between the fitted parameters of SLF variability and stellar properties. Our analysis unveiled four significant correlations between the amplitude and stellar parameters, including mass, radius, fractional main-sequence ages, and mass-loss rate. For stars with ≳30 M ⊙, we observed a decrease in characteristic frequency and steepness with increasing radius. Finally, we compared various physical processes that may account for the SLF variability with our results. The observed SLF variability may arise from the combined effects of the iron convection zone (FeCZ) and internal gravity waves (IGWs), with IGWs potentially more dominant in the early stages of stellar evolution, and the contribution of FeCZ becoming more significant as stars evolve. Meanwhile, our results indicate that the SLF variability of O-type stars bears certain signatures of the line-driven wind instability and granulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.