Abstract
We analyze spectroscopic and photometric data to determine the projected inclinations of stars in 11 open clusters, placing constraints on the spin-axis distributions of six clusters. We combine these results with four additional clusters studied by Healy & McCullough and Healy et al. to perform an ensemble analysis of their spins. We find that eight out of 10 constrained clusters (80%) have spin-axis orientations consistent with isotropy, and we establish a lower limit of four out of 10 (40%) isotropic clusters at 75% confidence, assuming no correlation of spins between clusters. We also identify two clusters whose spin-axis distributions can be better described by a model consisting of an aligned fraction of stars combined with an isotropic distribution. However, the inclination values of these stars may be influenced by systematic error, and the small number of stars modeled as aligned in these two clusters precludes the interpretation that their stellar subsets are physically aligned. Overall, no cluster displays an unambiguous signature of spin alignment, and 97% of the stars in our sample are consistent with isotropic orientations in their respective clusters. Our results offer support for the dominance of turbulence over ordered rotation in clumps and do not suggest the alignment of rotation axes and magnetic fields in protostars.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.