Abstract

The accelerograms of the 1999 Chamoli earthquake and nine of its aftershocks, which occurred in Uttaranchal Himalaya, have been analyzed to investigate their source parameters, the site amplification functions and the average effective shear-wave quality factor Qseff in the region. The fault plane solution of the main shock is obtained using the spectral amplitudes of SH waves (approximated by transverse components of accelerograms) of the high-energy packets observed in the accelerograms of the main shock. It is found to be comparable with the reported solutions in other studies. Similarly the other source parameters (viz., seismic moment = (5.03±1.7) × 1025 dyne-cm, stress drop = 65 bars, source duration = 5.2 s and moment magnitude = 6.4) estimated for the main shock are consistent with the values obtained in other studies. The stress drops estimated for the aftershocks vary from 23 bars to 153 bars and the seismic moment from 1.4 × 1023 dyne-cm to 2.9 × 1023 dyne-cm. The average estimated values of the effective shear-wave quality factor Qseff vary from 655±359 in the Uttaranchal sector of Himalaya and 1475±130 in the Delhi region. In general, the Qseff value increases with an increase in the epicentral distance reflecting the penetration of the waves into deeper layers of the crust as the epicentral distance of the observation point increases. These values of Qseff indicate that in general the curst is at low temperatures that will promote brittle behavior and conditions for episodic failure as compared to creep, under the accumulated strains from plate collision at the Himalaya plate boundary. The site amplification characteristics at sites have been identified from the frequency bands of significant amplification observed in the spectral ratios of the horizontal to the vertical component records. The decay of peak ground acceleration (PGA) values with distance has been investigated using the empirical regression curves vis-a-vis the site amplification factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call