Abstract

The nature of the binding of several ruthenium polypyridyl complexes containing 2,2'-bipyridine (bipy), 4,4'-dimethyl-2,2'-bipyridine (DMB), 1,10-phenanthroline (phen), 4,7-diphenyl-1,10-phenanthroline (DPP), 2,2',2"-terpyridine (terpy), 2,2'-biquinoline (biq), 1,4,5,8-tetraazaphenanthrene (TAP) and 1,4,5,8,9,12-hexaazatriphenylene (HAT), with calf thymus DNA, poly[d(A-T)] and poly[d(G-C)] were studied by absorption and emission spectroscopy, DNA melting techniques, and emission lifetime measurements. In low ionic strength phosphate buffer, spectroscopic changes and DNA stabilization depended on the polypyridyl ligands present, and indicated binding that varied from substantially electrostatic to intercalative. Ru(bipy)2(HAT)2+ and Ru(phen)3(2+), which bind by partial intercalation, also show a strong preference for poly[d(A-T)]. The emission quantum yields for most complexes were increased in the presence of DNA. An exception was Ru(TAP)3(2+) which has a markedly reduced emission quantum yield and lifetime in the presence of poly[d(G-C)] or CT-DNA, due to photoredox interaction with quanines. Emission decays of the complexes generally showed multiexponential behaviour. The ability of the ruthenium complexes to sensitise DNA cleavage was determined using pBR322 plasmid DNA. Ru(TAP)3(2+) is the most efficient sensitiser while uncharged complexes and complexes with very short-lived excited states do not cleave DNA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.