Abstract

A shock wave appearing in supersonic gas flow reflects in different ways depending on flow conditions. It can take the form of regular or irregular reflection. For the irregular reflection configuration of three shock waves and a slipstream arises. Mathematical investigations of the development of parameters across slipstream in triple shock configuration have been made with variation of the angle of incidence of the shock wave, the shock wave Mach number and the adiabatic index of the gas. It has been shown that the characteristic mixing parameters of the slipstream increase with the increase of Mach number of the flow and the decrease of the heat capacity ratio. This leads to an increase of vortex formation and an increase of the angular spread of the slipstream. It also has been shown that the angle between the reflected wave and the slipstream diminishes with the decrease in heat capacity ratio so that the value may become of the same order as the spread angle. This may lead to quantitative changes in the whole reflection pattern near the triple point. The evident dependence of slipstream instability magnitude on the physical and chemical transformation intensity in the fluid was previously experimentally observed. The results of an analytical investigation appeared to be in good agreement with the experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.