Abstract
This paper deals with the flashover voltages on samples of silicone rubber/ethylene propylene diene monomer (SiR/EPDM) mixtures under the influence of a uniform electric field. Five different mixtures of SiR/EPDM were investigated. Various SiR/EPDM mixtures (100% EPDM, 10% SiR + 90% EPDM, 30% SiR + 70% EPDM, 50% SiR + 50% EPDM, 70% SiR + 30% EPDM, 90% SiR + 10% EPDM, 100% SiR) were tested for different water droplet arrangements, different water conductivities, different droplet volumes as well as different droplet positioning w.r.t. the electrodes. The 50% SiR + 50% EPDM mixture proved to be the best mixture regarding the flashover voltage.
Highlights
Polymeric outdoor insulators are in use in the past few decades [1]
Sykaras et al.: A Study of SiR/ethylene propylene diene monomer (EPDM) Mixtures for Outdoor Insulators less expensive compared to silicone rubber
It seems that mixture C (50% SiR - 50% EPDM) presents a satisfying flashover behavior
Summary
SSN College of Engineering, Department of Electrical and Electronics Engineering, Chennai, India. Indian Institute of Technology Madras, Department of Electrical Engineering, Chennai, Tamil Nadu, India. Abstract—This paper deals with the flashover voltages on samples of silicone rubber/ethylene propylene diene monomer (SiR/EPDM) mixtures under the influence of a uniform electric field. Five different mixtures of SiR/EPDM were investigated. Various SiR/EPDM mixtures (100% EPDM, 10% SiR + 90% EPDM, 30% SiR + 70% EPDM, 50% SiR + 50% EPDM, 70% SiR + 30% EPDM, 90% SiR + 10% EPDM, 100% SiR) were tested for different water droplet arrangements, different water conductivities, different droplet volumes as well as different droplet positioning w.r.t. the electrodes. The 50% SiR + 50% EPDM mixture proved to be the best mixture regarding the flashover voltage
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Engineering, Technology & Applied Science Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.