Abstract

Shear flows induced by the nonlinear evolution of double tearing modes are studied numerically using Hall magnetohydrodynamics simulations in a slab geometry. The Hall effect is shown to plays an important role when the thickness of current sheets decrease and falls in the range of ion inertia length d i . Effective shear flows in the magnetic islands are generated during the process of magnetic reconnection and disappear finally. The induced toroidal velocity are shown to be more sensitive than the induced poloidal velocities in the Hall dominant systems. Moreover, the temporal evolution of the shear flows in the Tokamak resonant surface is studied and discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call