Abstract

Abstract Unconventional fractured ultra-low-permeability reservoirs play an important role in continental sedimentary basins in China, and their formation characteristics and seepage laws are greatly different from that of traditional reservoirs. In this paper, the influence of microfractures and unsteady waterflooding on the productivity of fractured ultra-low permeability reservoirs are studied deeply. The reservoir parameters used in the study are from an actual fractured ultra-low-permeability reservoir in Ordos Basin, where microfractures are developed but macroscopic fractures are not. The microfractures have a small opening and are widely distributed in the reservoir, so the reservoir numerical simulation model adopts the equivalent continuous matrix model to simulate waterflooding. On one hand, the physical model of micro-fractured reservoir and the permeability tensor model of the equivalent continuous matrix are established. The results show that the existence of microfractures can increase the permeability of matrix by 1.4 times. On the other hand, an ideal heterogeneous numerical simulation model composed of pure matrix and equivalent continuous matrix considering microfracture is established according to actual geological parameters of the fractured ultra-low-permeability reservoir. To simulate and compare the unsteady waterflooding and continuous waterflooding development in 10-year development under the condition of constant annual injection rate, the results indicate that unsteady waterflooding development make higher productivity and lower water cut and lower formation water saturation than that of continuous waterflooding. By conducting unsteady waterflooding development simulation for sensitivity analysis, the results demonstrate that the greater the capillary force, the better the role of capillary imbibition in a certain range, meanwhile, the unsteady waterflooding has the best exploitation effect when the value of water injection cycle time is 100 days and the fluctuation amplitude of water injection rate is 1. At the above situation, the displacement and capillary imbibition and pressure disturbance achieve the desired effect of reducing water cut and increasing oil production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.