Abstract
A unique rotational double-taper scratching setup is used to study ductile brittle transitions in single crystal (100) p-type silicon using a conical diamond tool at room temperature and scratching speeds ranging between 0.1 m/s and 0.3 m/s. In such a setup, transition from brittle to ductile occurs twice in a single-tapered scratch, during tool entry and tool exit. A well-defined way to determine critical depth of cut via linear crack density per unit crack length is proposed. The scratches were studied using scanning electron microscopy (morphology) and white light interferometry (depth measurements). A comprehensive study of critical depth of cut, compiled from the literature together with data from this study, with scratching speeds from very low to high shows that critical depth of cut decreases from very low scratch speeds to medium scratch speeds and then increases again at very high scratch speeds. An inference from this study is that diamond turning should be conducted at higher cutting speeds than being undertaken today to make use of larger critical depths of cut.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.