Abstract

In the study, we have shown the efficacy of an indigenously developed redox balancing chitosan gel with impregnated citrate capped Mn3O4 nanoparticles (nanogel). Application of the nanogel on a wound of preclinical mice model shows role of various signaling molecules and growth factors, and involvement of reactive oxygen species (ROS) at every stage, namely hemostasis, inflammation, and proliferation leading to complete maturation for the scarless wound healing. While in vitro characterization of nanogel using SEM, EDAX, and optical spectroscopy reveals pH regulated redox buffering capacity, in vivo preclinical studies on Swiss albino involving IL-12, IFN-γ, and α-SMA signaling molecules and detailed histopathological investigation and angiogenesis on every stage elucidate role of redox buffering for the complete wound healing process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.