Abstract

This paper investigates the fault detection and diagnosis for a class of rolling-element bearings using signal-based methods based on the motor's vibration and phase current measurements, respectively. The envelope detection method is employed to preprocess the measured vibration data before the FFT algorithm is used for vibration analysis. The average of a set of Short-Time FFT (STFFT) is used for the current spectrum analysis. A set of fault scenarios, including single and multiple point- defects as well as generalized roughness conditions, are designed and tested under different operational conditions, including different motor speeds, different load conditions and samples from different operating time intervals. The experimental results show the powerful capability of vibration analysis in the bearing point-defect fault diagnosis under stationary operation. The current analysis showed a subtle capability in diagnosis of point-defect faults depending on the type of fault, severity of the fault and operational condition. The generalized roughness fault can not be detected by the proposed frequency methods. The temporal features of the considered faults and their impact on the diagnosis analysis are also investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.