Abstract

Due to the consequence of expensive development costs that arise with manufacturing and synthesizing new polymers, interest in polymer blends has gained considerable attention in recent years. It is well known that the production of miscible and immiscible blends of polymers can lead to composite materials with special chemical, thermal, mechanical, and rheological properties. The morphology of immiscible polymer blends arises during mixing and is affected by the processing conditions, particular interactions, and the interfacial tension and viscosity ratio between the components. The significance of the interfacial energy between the blend components and its inherent effect on the rheology is of extreme importance to others and our research. Understanding the effect that the blending conditions and compositions of the phases have on the overall morphology can allow manipulation of this morphology that can lead to uniquely tailored materials. Recent developments of low-7^ inorganic phosphate glasses (Pglass) have led to interest in inorganic-organic hybrids that can be processed via conventional thermoplastic blending and injection molding at low temperatures (below 350°C). This dissertation discusses the continued research of Otaigbe and coworkers by using a special low-r if(~ 120°C). tin-based phosphate glass (Pglass) blended with thermoplastics such as polystyrene (PS), low-density polyethylene (LDPE), and polypropylene (PP). The present research demonstrates a facile method for producing unique inorganic-organic hybrids under low temperatures with tailored properties. This is made possible by the relative ease of deformation and elongation of the low-7^ Pglass phase within the polymer melt matrix. We analyzed the rheology, morphology, and ultimately the processing conditions on the Pglass-

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.