Abstract
The combination of dimethylation after gu anidination (2MEGA) isotope labeling with microbore liquid chromatography (LC)-matrix-assisted laser desorption ionization (MALDI) MS and MS/MS [C. Ji, N. Guo, L. Li, J. Proteome Res. 4 (2005) 2099] has been reported as a promising strategy for abundance ratio-dependent quantitative proteome analysis. A critical step in using this integrated strategy is to set up the abundance ratio threshold of peptide pairs, above which the peptide pairs are used for quantifying and identifying the protein that is considered to be differentially expressed between two different samples. The threshold is determined by technical variation (i.e., the overall abundance ratio variation caused by the experimental process including sample workup, MS analysis and data processing) as well as biological variation (i.e., the abundance ratio variation caused by the biological process including cell growth), which can be defined and assessed by a coefficient of variation (CV). We have designed experiments and measured three different levels of variations, starting with the same membrane protein preparation, the same batch of cells and three batches of cells from the same cell line grown under the same conditions, respectively. It is shown that technical variation from the experimental processes involved in 2MEGA labeling LC-MALDI MS has a CV of <15%. In addition, the measured biological variation from cell growth was much smaller than the measured technical variation. From the studies of the occurrence rate of outliers in the distribution of the abundance ratio data within a comparative dataset of peptide pairs, it is concluded that, to compare the proteome changes between two sets of cultured cells without the use of replicate experiments, a relative abundance ratio of greater than 2 X or less than 0.5 X ( X is the average abundance ratio of the dataset) on peptide pairs can be used as a stringent threshold to quantify and identify differentially expressed proteins with high confidence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.