Abstract
Topic ontologies or web directories consist of large collections of links to websites, arranged by topic in different categories. The structure of these ontologies is typically not flat because there are hierarchical and nonhierarchical relationships among topics. As a consequence, websites classified under a certain topic may be relevant to other topics. Although some of these relevance relations are explicit, most of them must be discovered by an analysis of the structure of the ontologies. This article proposes a family of models of relevance propagation in topic ontologies. An efficient computational framework is described and used to compute nine different models for a portion of the Open Directory Project graph consisting of more than half a million nodes and approximately 1.5 million edges of different types. After performing a quantitative analysis, a user study was carried out to compare the most promising models. It was found that some general difficulties rule out the possibility of defining flawless models of relevance propagation that only take into account structural aspects of an ontology. However, there is a clear indication that including transitive relations induced by the nonhierarchical components of the ontology results in relevance propagation models that are superior to more basic approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the American Society for Information Science and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.