Abstract

High-energy synchrotron X-ray diffraction is a novel and powerful tool for bulk studies of materials. In this study, it is applied for the investigation of an intermetallic γ-TiAl based alloy. Not only the diffraction angles, but also the morphology of reflections on the Debye-Scherrer rings are evaluated in order to approach lattice parameters and grain sizes as well as crystallographic relationships. An in-situ heating cycle from room temperature to 1362 °C has been conducted starting from massively transformed γ-TiAl which exhibits high internal stresses. With increasing temperature the occurrence of strain relaxation, chemical and phase separation, domain orientations, phase transitions, recrystallization processes, and subsequent grain growth can be observed. The data obtained by high-energy synchrotron X-ray diffraction, extremely rich in information, are interpreted step by step.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.