Abstract

With the surge in college graduate numbers, a disparity has emerged where the supply of jobs falls short of demand, intensifying employment pressures annually. College graduates, due to their lack of historical employment data compared with job seekers in the broader society, encounter a ‘cold start’ issue in the job recommendation process. Additionally, the nature of job recommendations, which differs fundamentally from unilateral recommendations, requires consideration of reciprocity between both parties involved. This article introduces a new approach to job recommendations using college graduates as the object of study. In the screening stage, a semantic keyword iterative algorithm is applied to compute the similarity between the resume and recruitment texts. This algorithm enhances the intersectionality of keywords in the calculation process, maximizing the utilization of resume information to enhance the accuracy of text similarity calculations. The ranking phase utilizes in-school data to build a social network between college graduates and graduated students and solves the system’s cold-start problem using the social network to recommend jobs for college graduates where graduated students are employed. We introduce a dual-dimensional matching approach that incorporates both specialty and salary, building upon the amalgamated semantic keyword iterative algorithm and the social network job recommendation method, to enhance the reciprocity of job recommendations. The job recommendation method introduced herein outperforms other methods in terms of the average satisfaction rate (AR) and normalized discounted cumulative gain (NDCG), thereby confirming its superior ability to meet the job-seeking preferences of graduates and the recruitment criteria of employers. This job recommendation method offers effective assistance to graduates lacking employment experience and historical employment data, facilitating their search for more suitable job opportunities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.