Abstract

Linear and weakly nonlinear stability analyses of Rayleigh–Benard convection in water–copper–alumina hybrid nanoliquid bounded by rigid isothermal boundaries is studied analytically. A single-phase description is used for the nanoliquid. Using a minimal Fourier series representation and an appropriate scaling a classical Lorenz model for rigid isothermal boundaries is derived. The Lorenz model is transformed to the Ginzburg–Landau model using the renormalization group method. The solution of the Ginzburg–Landau model is used to arrive at the expression of the Nusselt number. The study shows that the presence of two nanoparticles in water is to increase the coefficient of friction, advance the onset of convection and enhance the heat transfer. Further, it is shown that compared to a single nanoparticle the combined influence of two nanoparticles is more effective on heat transfer. The percentage of heat transfer enhancement in water due to Al2O3-Cu hybrid nanoparticles is almost twice that of Al2O3 nanopartcles. It is found that the hybrid nanoparticles of Al2O3-Cu intensify convection in water more than the mono nanoparticles of Al2O3 and the plots of stream function and isotherm point to this fact. The effect of the physically realistic rigid boundaries is to inhibit the onset of convection when compared with that of free boundaries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.