Abstract

A comparative analysis of the effect of the manufacturing technology of heterogeneousion-exchange membranes Ralex CM Pes manufactured by MEGA a.s. (Czech Republic) on the structural properties of their surface and cross section by SEM was carried out. The CM Pes membrane is a composite of a sulfonated ion-exchanger with inert binder of polyethylene and reinforcing polyester fiber. In the manufacture of membranes Ralex the influence of two factors was investigated. First, the time of ion-exchange grain millingvaried at a constant resin/polyethylene ratio. Second, the ratio of the cation-exchanger and the inert binder of polyethylene varied. It has been found that the membrane surface becomes more electrically homogeneous with the growth of the ion-exchanger loading and a decrease in its particle size. With an increase in the milling time of resin grainsfrom 5 to 80 min a more than 1.5-fold decrease in their radius and in the distance between them was revealed.Besides, there is a 1.5-fold decrease in the fraction, as well as in the size of pores and structure defects. The fraction of the ion-exchange phase on the membrane surface decreases by 7%. With an increase in the resin loading from 45 to 70 wt %, the growth of the fraction of conducting regions on the surface is almost twofold, while their sizes remain practically unchanged. More significant changes in the surface structure of the studied membranes are established in comparison with the cross section. An increase in the resin content in the membranes from 45 to 70 wt % corresponds to a 43% increment of its fraction on the cross-section.The increase in the ion-exchanger content of Ralex membranes is accompanied by the growth of the fraction of macropores and structure defects on the membrane surface by 70% and a twofold decrease in the distance between conducting zones.

Highlights

  • IntroductionIn the electrochemical behavior of heterogeneous ion-exchange membranes, the electrical inhomogeneity of their surface, consisting ofthe presence of the regions with high (ion-exchanger phase) and low (polyethylene phase) conductivity, plays an important role

  • In the electrochemical behavior of heterogeneous ion-exchange membranes, the electrical inhomogeneity of their surface, consisting ofthe presence of the regions with high and low conductivity, plays an important role

  • The use of membranes with optimized surface morphology in the process of electrodialysis for desalting and deionization of natural waters and technological solutions creates the prerequisites for a significant increase in the efficiency of these processes in the limiting and overlimiting current modes

Read more

Summary

Introduction

In the electrochemical behavior of heterogeneous ion-exchange membranes, the electrical inhomogeneity of their surface, consisting ofthe presence of the regions with high (ion-exchanger phase) and low (polyethylene phase) conductivity, plays an important role. In [1,2,3,4,5,6,7,8,9,10], the possibility of mass transfer intensification in an electromembrane system by improving the morphology of the surface of ion-exchange membranes was demonstrated. The use of membranes with optimized surface morphology in the process of electrodialysis for desalting and deionization of natural waters and technological solutions creates the prerequisites for a significant increase in the efficiency of these processes in the limiting and overlimiting current modes

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.