Abstract

ABSTRACTThe quasi-breakdown (QB) in ultra thin gate oxide is investigated through the observation of defect generation during high field F-N stress and substrate hot hole and hot electron stresses. The interface trap density increases during stress and reaches to a same critical amount at the onset point of QB regardless of stress current density and stressing carrier type. The experiments also show that hot carriers are much more effective to trigger QB than F-N electrons at the same current level. This can be ascribed to the fact that hot carrier has much higher interface state generation rate than F-N electron does. All results consistently support the interface damage model for the QB occurrence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.