Abstract

ABSTRACT Among the three candidate approaches for 32 nm, the double exposure/patterning with 1.35 NA immersion, the high refractive index immersion, and the extremely ultra violet (EUV) lithography, the easiest approach seems to be the double exposure/patterning method at an effective numerical aperture (NA) of 1.35. However, the design and optimization of the process, such as, the choice of illu mination condition, the choice of a photoresist, and the design of an optical proximity correction (OPC) strategy for both the singly and doubly exposed patterns still need to be developed. In this paper, we will focus on the finding of a suitable methodology in the printing of two-dimensional (2D) structures under the double exposure and single development scheme since it is the easiest and there is virtually no overlay concern. We have used a 248 nm exposure tool and a well-chosen photoresist to study the photo performance parameters in the merge of two photo exposures. At a numerical aperture (NA) around 0.7, the minimum ground rule we can achieve is 110 nm, similar to the one for a 75 nm logic-like process with minimum pitch of 220 nm. In the experiment, the single exposure structures are limited to pitches wider than 440 nm. In this paper, we will present a study on main process window parameters, such as, exposure latitude (EL), depth of focus (DOF), and mask error factor (MEF) for a typical 2D structure, the isolated opposing line end. We will demonstrate a near ly analytical method for the description of the line end shortening. Key words : Double Exposure, Line end shortening, LES, Effec tive resist diffusion length, partially coherent illumination

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.