Abstract

The electrical properties of carbon nanotubes (CNTs) grown by plasma-enhanced chemical vapor deposition (PECVD) have been studied by measuring the I-V characteristics of many CNT-field effect transistors. The ratio of modulation current to total current was as high as 97%, with a small nondepletable OFF current component. This suggests that CNTs with semiconducting behavior were preferentially grown in the PECVD process. Raman scattering spectroscopy of the PECVD-grown CNTs, however, revealed several peaks of the radial breezing mode, which correspond to the presence of metallic CNTs. Scanning gate microscopy measurement of the CNT-FET with an ON/OFF ratio of 100 revealed the existence of a potential barrier in the metallic CNTs. These results suggest that observation of the preferential growth of CNTs with semiconducting behavior in the CNT-FETs fabricated via the present PECVD process results from the opening of the band gap due to defects caused by irradiation damage during the PECVD growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.