Abstract

Red bone marrow is among the tissues of the human body that are most sensitive to ionizing radiation, but red bone marrow cannot be distinguished from yellow bone marrow by normal radiographic means. When using a computational model of the body constructed from computed tomography (CT) images for radiation dose, assumptions must be applied to calculate the dose to the red bone marrow. This paper presents an analysis of two methods of calculating red bone marrow distribution: 1) a homogeneous mixture of red and yellow bone marrow throughout the skeleton, and 2) International Commission on Radiological Protection cellularity factors applied to each bone segment. A computational dose model was constructed from the CT image set of the Visible Human Project and compared to the VIP-Man model, which was derived from color photographs of the same individual. These two data sets for the same individual provide the unique opportunity to compare the methods applied to the CT-based model against the observed distribution of red bone marrow for that individual. The mass of red bone marrow in each bone segment was calculated using both methods. The effect of the different red bone marrow distributions was analyzed by calculating the red bone marrow dose using the EGS4 Monte Carlo code for parallel beams of monoenergetic photons over an energy range of 30 keV to 6 MeV, cylindrical (simplified CT) sources centered about the head and abdomen over an energy range of 30 keV to 1 MeV, and a whole-body electron irradiation treatment protocol for 3.9 MeV electrons. Applying the method with cellularity factors improves the average difference in the estimation of mass in each bone segment as compared to the mass in VIP-Man by 45% over the homogenous mixture method. Red bone marrow doses calculated by the two methods are similar for parallel photon beams at high energy (above about 200 keV), but differ by as much as 40% at lower energies. The calculated red bone marrow doses differ significantly for simplified CT and electron beam irradiation, since the computed red bone marrow dose is a strong function of the cellularity factor applied to bone segments within the primary radiation beam. These results demonstrate the importance of properly applying realistic cellularity factors to computation dose models of the human body.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.