Abstract

A study was conducted on combinations of preconditioned iterative methods with matrix reordering to solve the linear systems arising from a biphasic velocity–pressure (v–p) finite element formulation used to simulate soft hydrated tissues in the human musculoskeletal system. Krylov subspace methods were tested due to the symmetric indefiniteness of our systems, specifically the generalized minimal residual (GMRES), transpose-free quasi-minimal residual (TFQMR), and biconjugate gradient stabilized (BiCGSTAB) methods. Standard graph reordering techniques were used with incomplete LU (ILU) preconditioning. Performance of the methods was compared on the basis of convergence rate, computing time, and memory requirements. Our results indicate that performance is affected more significantly by the choice of reordering scheme than by the choice of Krylov method. Overall, BiCGSTAB with one-way dissection (OWD) reordering performed best for a test problem representative of a physiological tissue layer. The preferred methods were then used to simulate the contact of the humeral head and glenoid tissue layers in glenohumeral joint of the shoulder, using a penetration-based method to approximate contact. The distribution of pressure and stress fields within the tissues shows significant through-thickness effects and demonstrates the importance of simulating soft hydrated tissues with a biphasic model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.