Abstract

In the present study, the effects of back pressure on the filling fraction of die and the effective strain distribution throughout severely deformed material during pure shear extrusion, a novel severe plastic deformation process, are investigated by finite element analysis. A pure shear extrusion process found in the literature is employed and the predicted forming load is compared with experiments. A good agreement is observed between the results of the simulation with Coulomb friction of 0.12 and experiments. Various back pressures are applied to plunger at the exit channel of the die, and their influence on the filling fraction of the die and the effective strain in severely deformed billets are studied, indicating that the homogeneity of the effective strain on the cross-section of the deformed billet is decreased slightly. It is also found that the filling fraction of the die exit channel as well as average strain on the cross-section of the billet are increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call