Abstract

Radiation chemistry and results of Ps yields indicate that the following processes occur in the positron spur in solution of halogen-substituted hydrocarbons, RX n : e + + e − → Ps, e − + RX n → (RX n ) − → RX n−1 + X −, e + + (RX n ) − → Ps + RX n , e + + X − → [X −, e +]. Hence the trapped electron can form Ps only if (RX n ) − is stable or has a lifetime that is longer than o comparable to the Ps formation time. Previous studies have shown that some of the strongly chlorinated benzenes ( n = 4.5 give reasonable inhibition in benzene but not in linear hydrocarbons. The reason is very probably that the dechlorination time is much shorter in benzene than in saturated hydrocarbons because Cl − is more strongly solvated in benzene than in non-aromatic hydrocarbons. To test those ideas further we have begun detailed studies of solutions of the possible “intermediate” inhibitors, viz. 1,2,3,5- and 1,2,4,5-C 6H 2Cl 4, in mixtures of C 6H 6/C 6H 14 different methyl-substituted benzene aniline, anisole, dioxane and ethylbenzene. The results are discussed and interpreted in terms of the spur model. The Ps inhibition efficiency of the two isomeric forms of tetrachlorobenzene studied, appears most probably to depend on intramolecular electron transfer with subsequent dehalogenation of the molecular anion on a picosecond timescale. The divergence in inhibitor efficiency obtained for the chlorobenzenes when dissolved in aromatic solvents compared to the same solutes when dissolved in a saturated alkane appears most probably to be caused by complex formation between the initially formed chlorobenzene anion and benzene molecules, which permits a rapid relaxation of the molecular anion with subsequent bond stretching and expulsion of the chloride anion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.