Abstract

Despite the widespread use of drug‐loaded polymeric systems, there is still considerable uncertainty with regard to the nature of the distribution of the drug within the polymer matrix. The aim of this investigation was to develop thermal and microscopic techniques whereby the miscibility and spatial distribution of a model peptide, cyclosporin A (CyA), in hydroxypropyl methylcellulose (HPMC) films may be studied. The new technique of Tzero‐modulated temperature differential scanning calorimetry (Tzero MTDSC), scanning electron microscopy (SEM), and pulse force mode atomic force microscopy (PFM‐AFM) were used in conjunction to study films prepared using a solvent evaporation process, with a solvent extraction study performed to elucidate the nature of the observed phases. Tzero MTDSC studies showed glass transitions for both the HPMC and CycA, with the Tg for the HPMC and CycA seen for the mixed systems. SEM showed two spherical phases of differing electron density. PFM‐AFM also showed spheres of differing adhesion that increased in size on addition of drug. Pixel intensity analysis indicated that the smaller spheres corresponded to CycA. Exposure of the films to dichloromethane, in which CycA is soluble but HPMC is not, resulted in the presence of voids that corresponded well to the spheres suggested to correspond to the drug. It was concluded that the system had undergone extensive or complete phase separation, and that the thermal and microscopic techniques outlined above are an effective means by which this issue may be studied. © 2004 Wiley‐Liss, Inc. and the American Pharmacists Association J Pharm Sci 93:1672–1681, 2004

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.