Abstract

Blood flow through a stenosed artery has been investigated in this paper. Blood has been represented by a non-Newtonian fluid obeying Herschel-Bulkley equation. This model has been used to study the influence of the fluid behaviour index n, shear-dependent nonlinear viscosity K and the yield stress tau H in blood flow through stenosed arteries. The variation of the wall shear stress and the flow resistance with n, K and tau H has been shown graphically. It is observed that the wall shear stress and the flow resistance increase in Herschel-Bulkley fluid in comparison with corresponding Newtonian fluid. It is of interest to note that, in the present model, the thickness of the plug core varies with the axial distance z in the stenotic region. Finally, some biological implications of the present model for some arterial diseases have been briefly discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call