Abstract

In the present work, a non-Boussinesq (variable physical properties) integral boundary layer analysis is accomplished. The model analyzes laminar free convection between nuclear fuel plates having large fuel plate length to gap between plate ratio. The coolant channels are undergoing to a uniform, symmetric, heat flux and varying fluid properties. In the present study the flow is assumed to be fully developed. This is a good assumption for channels with large fuel plate length to gap between plate ratios. To describe the velocity and temperature distributions of the coolant the non-Boussinesq approximation is introduced into the integral boundary layer equations of flow between parallel plates. The fuel plate temperature is related to the adjacent coolant fluid temperature by a principle in conduction heat transfer. Fluids considered here are air and water. The obtained results show that the present heat transfer problem encountered in nuclear research reactor such Tehran nuclear research reactor (TRR) is characterized by high temperature ratios and thereby rendering the commonly applied Boussinesq approximation invalid. As a result, the use of the Boussinesq approximation (constant fluid properties) for high temperature ratios is not suggested.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.