Abstract

We studied Ta, TaN, and sub-stoichiometric TaNx electrodes (obtained by nitrogen redistribution in Ta/TaN or Ti/TaN bilayers) deposited on thermal SiO2 and HfO2/IL (0.8 nm SiO2 IL, i.e., interlayer) stacks. Effective work-functions (WF) were extracted on MOS capacitor structures on SiO2 bevelled insulator of 4.2 eV for pure Ta, 4.6 eV for TaN, and 4.3 eV for sub-stoichiometric TaNx. This intermediate WF value is explained by TaN nitrogen redistribution with reactive Ta or Ti elements shifting the gate work-function toward the Si conduction band. The same electrodes deposited on an HfO2/IL dielectric showed different behavior: First, the Ta/HfO2/IL stack shows a +200 meV WF increase (towards the Si valence band) compared to the SiO2 dielectric stack. This increase is explained by the well-known HfO2/IL dipole formation. Second, in contrast to electrodes deposited on SiO2, sub-stoichiometric TaNx/HfO2 is found to have a lower WF (4.3 eV), than pure Ta on HfO2 (4.4 eV). This inversion in work-function behavior measured on SiO2 vs. HfO2 is explained by the nitrogen redistribution in Ta/TaN bilayer together with diffusion of nitrogen through the HfO2 layer, leading to Si-N formation which prevents dipole formation at the HfO2/IL interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.