Abstract

For the design of ADS (Accelerator Driven System), it is important to study neutron spectra and details of nuclear reactions induced by neutrons. Furthermore, neutron energy and angular distribution data are important for a correct simulation of the propagation of particles inside a spallation target and the geometrical distribution of the outgoing neutron flux. Many experimental results are available for thin targets and massive targets additional studies of neutron spectra and neutron production were investigated to design target for ADS with incident proton energies up to 3 GeV. In our study, the angular distribution and the neutron energy spectra are reported for the (p,n) reaction on target nuclei such as Pb, U, W with energy from 50 MeV to 350 MeV calculated with database of JENDL-HE 2007. We obtain a set of data about the angular distribution and energy spectra of produced neutrons on some heavy targets with energy ranges as stated above. From the results of neutron spectra, the paper also gives many comments to recommend a choice of materials for target and energies for accelerating proton beam . From the angle distribution of neutrons generated in (p, n) reactions on the different targets with the different energies of proton, the solutions to arrange the reflection bars in reactor proposed. A comparison is also made to improve the reliability for calculation of the paper.

Highlights

  • The spallation reaction is caused by bombarding a target with particles having energies above a few hundred MeV

  • This paper describes the calculation of spatial distribution and energy spectra of produced neutron performed on the proton beam with the energy of 50 MeV to 350 MeV

  • We are interested in the cross section for the energic spectra and spatial distribution of neutron obtained for the incident proton energy of 50 to 350 MeV

Read more

Summary

Introduction

The spallation reaction is caused by bombarding a target with particles having energies above a few hundred MeV. This reaction produces a great number of neutrons, and is applicable to produce an intense spallation neutron source or transmuting long-lived radioactive wastes [1, 2]. The design of target is a key issue to be investigated when designing an ADS [3], and its performance is characterized by the number of neutrons emitted by (p, n) reaction. This paper describes the calculation of spatial distribution and energy spectra of produced neutron performed on the proton beam with the energy of 50 MeV to 350 MeV.

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.