Abstract

The laser-assisted seeding (LAS) mechanism has the potential to replace the conventional electroless copper plating in printed circuit board (PCB) manufacture because it combines the steps of drilling and electroless plating into one. The LAS mechanism should be able to plate microvias with high aspect ratio that may not be feasible by conventional electroless plating due to the small via geometry. The conventional electroless plating process generates considerable quantities of chemical waste. In particular, the plating of microvia with high aspect ratio close to 1 is difficult due to the limited accessibility of chemical solution to the via internal wall surface in conventional plating technology. LAS is a promising alternative. The objectives of this paper are to report the deposition mechanism of a thin copper film layer (laser-assisted seeding) on PCB microvias dielectric and to study the thermal reliability of the microvias produced by this mechanism. Results find that the microvias produced by LAS are thermally and electrically as reliable as conventional electroless plating technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.