Abstract

Abstract The mechanism of microbiologically influenced corrosion (MIC) on carbon steel (CS) by the bacteria Desulfovibrio desulfuricans subs. desulfuricans was studied using hydrogen permeation, open-circuit potential, and cathodic polarization techniques, in a concentrated culture medium containing bacteria cells (107 cell/mL) and ferrous ions (300 mg/L) designed to simulate a condition common in systems for the secondary recovery of crude oil, characterized by highly contaminated microenvironments that severely corrode iron alloys in a short time period. This research project was carried out using several 24-h experiments to define initial stages of the corrosive process under the conditions indicated. The results evidenced a hydrogen permeation current peak of about 12 μA correlated with a minimum open-circuit potential of −780 mV vs saturated calomel electrode (SCE), 400 min after inoculation. Next, the permeation current decreased abruptly to its base line and the potential increased, stabilizing at ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.