Abstract

Heterogeneous catalytic fixed bed usually suffers from severe limitations of mass and heat transfer. These disadvantages limit reformers to a low efficiency of catalyst utilization. Three catalyst activity distributions have been applied to force the reactor temperature profile to be near isothermal operation for maximization of methanol conversion. A plate-type reactor has been developed to investigate the influence of catalyst activity distribution on methanol steam reforming. Cold spot temperature gradients are observed in the temperature profile along the reactor axis. It has been experimentally verified that reducing cold spot temperature gradients contributes to the improvement of the catalytic hydrogen production. The lowest cold spot temperature gradient of 3 K is obtained on gradient catalyst distribution type A. This is attributed to good characteristics of local thermal effect. Low activity at the reactor inlet with gradual rise along with the reactor flow channel forms the optimal activity distribution. Hydrogen production rate of 161.3 L/h is obtained at the methanol conversion of 93.1% for the gradient distribution type A when the inlet temperature is 543 K.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call