Abstract

In DEM simulations of triaxial tests, modelling a flexible lateral membrane is crucial and challenging. It is essential for the correct application of a uniform lateral pressure and for an accurate measurement of sample volume. Here, we introduce a membrane made of triangular facets, and model it as a continuum; we then compare this approach with a well-established method that uses a layer of bonded spheres. With either method, it is also possible to assess the additional stress applied by the membrane as it deforms, i.e. the difference between the stress applied at the boundary and the actual stress within the sample. It is shown that this difference has two origins: the tension developed in the membrane, as it deforms; and the curvature of the membrane, since this causes a vertical component of the confining pressure which can be significant. These findings may be used to inform and improve the membrane correction commonly used in experiments, where similar effects occur.Graphic abstract

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.