Abstract

BackgroundUnderstanding of malaria vector density, distribution, insecticide resistance, vector incrimination, infection status, and identification of sibling species are some of the essential components of vector control measures for achieving malaria elimination goals.MethodsAs part of the malaria elimination demonstration project, entomological surveillance was carried out from October 2017 to October 2019 by collecting indoor resting mosquitoes using hand catch method. Susceptibility test was done for determining the insecticide resistance status of vector mosquito Anopheles culicifacies using standard protocols by the World Health Organization. The cone bioassay method was used for determining the efficacy and quality of insecticide sprayed. Mosquitoes collected from different ecotypes were identified and processed for parasite identification, vector incrimination and sibling species determination.ResultsThe two known malaria vector species (Anopheles culicifacies and Anopheles fluviatilis) were found in the study area, which have been previously reported in this and adjoining areas of the State of Madhya Pradesh. The prevalence of An. culicifacies was significantly higher in all study villages with peak in July while lowest number was recorded in May. Proportion of vector density was observed to be low in foothill terrains. The other anopheline species viz, Anopheles subpictus, Anopheles annularis, Anopheles vagus, Anopheles splendidus, Anopheles pallidus, Anopheles nigerrimus and Anopheles barbirostris were also recorded in the study area, although their prevalence was significantly less compared to the An. culicifacies. In 2017, An. culicifacies was found to be resistant to dichloro-diphenyl-trichloroethane (DDT) and malathion, with possible resistance to alphacypermethrin and susceptible to deltamethrin. However, in 2019, the species was found to be resistant to alphacypermethrin, DDT, malathion, with possible resistance to deltamethrin. The bioassays revealed 82 to > 98% corrected % mortality of An. culicifacies on day-one post-spraying and 35 to 62% on follow-up day-30. Anopheles culicifacies sibling species C was most prevalent (38.5%) followed by A/D and E while B was least pre-dominant (11.9%). Anopheles fluviatilis sibling species T was most prevalent (74.6%) followed by U (25.4%) while species S was not recorded. One An.culicifacies (sibling species C) was found positive for Plasmodium falciparum by PCR tests in the mosquitoes sampled from the test areas.ConclusionBased on the nine entomologic investigations conducted between 2017–2019, it was concluded that An. culicifacies was present throughout the year while An. fluviatilis had seasonal presence in the study areas. Anopheles culicifacies was resistant to alphacypermethrin and emerging resistance to deltamethrin was observed in this area. Anopheles culicifacies was confirmed as the malaria vector. This type of information on indigenous malaria vectors and insecticide resistance is important in implementation of vector control through indoor residual spraying (IRS) and use of insecticide-impregnated bed nets for achieving the malaria elimination goals.

Highlights

  • Understanding of malaria vector density, distribution, insecticide resistance, vector incrimination, infection status, and identification of sibling species are some of the essential components of vector control measures for achieving malaria elimination goals

  • Based on the nine entomologic investigations conducted between 2017–2019, it was concluded that An. culicifacies was present throughout the year while An. fluviatilis had seasonal presence in the study areas

  • Anopheles culicifacies was resistant to alphacypermethrin and emerging resistance to deltamethrin was observed in this area

Read more

Summary

Introduction

Understanding of malaria vector density, distribution, insecticide resistance, vector incrimination, infection status, and identification of sibling species are some of the essential components of vector control measures for achieving malaria elimination goals. Outside the African region, India has the highest burden of disease amongst the South-East Asian (SEAR) countries. It is a parasitic infectious disease transmitted by female Anopheles mosquitoes. The Roll Back Malaria Partnership to End Malaria (RBM) launched the Global Malaria Action Plan (GMAP) in 2008 and Action and Investment to defeat Malaria 2016–2030 (AIM) in 2015 with the goal of reducing and eliminating malaria. The goals of the World Health Organization (WHO) Global Technical Strategy for malaria 2016–2030 (GTS) are to reduce malaria and mortality rate globally by at least 90% compared with 2015 levels, and to eliminate malaria from at least 35 countries, including India

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call