Abstract

Cu–Zn–Sn intermetallic thin films were sputtered on Mo-coated soda-lime glass substrates from elemental targets. Samples representing a wide range of compositions around the 2:1:1 kesterite ratio of the Cu–Zn–Sn material system have been investigated. Crystalline phase content and chemical composition of the metal precursors were characterized by X-ray phase analysis and X-ray fluorescence. The metal precursor films were then processed into metal chalcogenides by rapid thermal processing in sulfur ambient with a maximum process temperature around 500°C. Thin films were investigated by X-ray powder diffraction, X-ray fluorescence and Raman spectroscopy to identify their phase contents as a function of precursor composition and initial intermetallic crystalline phase content. Compositional regions of kesterite crystallization as well as remaining secondary chalcogenide phases were identified. Consequences of the obtained results for the thin film crystallization of Kesterite absorbers for solar cell fabrication by rapid thermal processing of metallic precursors will be discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call