Abstract

The kale crop is an important bulk vegetable, and automatic segmentation to recognize kale is fundamental for effective field management. However, complex backgrounds and texture-rich edge details make fine segmentation of kale difficult. To this end, we constructed a kale dataset in a real field scenario and proposed an UperNet semantic segmentation model with a Swin transformer as the backbone network and improved the model according to the growth characteristics of kale. Firstly, a channel attention module (CAM) is introduced into the Swin transformer module to improve the representation ability of the network and enhance the extraction of kale outer leaf and leaf bulb information; secondly, the extraction accuracy of kale target edges is improved in the decoding part by designing an attention refinement module (ARM); lastly, the uneven distribution of classes is solved by modifying the optimizer and loss function to solve the class distribution problem. The experimental results show that the improved model in this paper has excellent performance in feature extraction, and the average intersection and merger ratio (mIOU) of the improved kale segmentation can be up to 91.2%, and the average pixel accuracy (mPA) can be up to 95.2%, which is 2.1 percentage points and 4.7 percentage points higher than the original UperNet model, respectively, and it effectively improves the segmentation recognition of kale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call