Abstract
A classical solution derived by Jones (1968) is used to evaluate the buckling performance of unstiffened generally orthotropic and quasi-isotropic laminated Graphite/Epoxy (GREP) composite cylinders subjected to external hydrostatic pressure. The results of the analysis are compared to finite-element analysis results. Hydrostatic testing to failure of several 12-ply T300/5208 GREP cylinders demonstrated that the classical buckling solution is quite accurate. The finite-element results showed good agreement with both Jones' solution and test data, with several notable exceptions. Evaluation of strain gage data via Southwell's (1932) method indicates that the test cylinders were fabricated very nearly true. A postiori buckling predictions using Southwell plots all compared quite favorably with the Jones' equation predictions. This work demonstrates that a relatively simple analytical solution can reliably evaluate the performance of composite materials in pressure hull applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.