Abstract

The effect on the propagation of ion-acoustic solitons and double layers has been studied in collisionless weakly relativistic plasma consisting of two-electron temperature with isothermal electrons and finite ion temperature. The Korteweg de-Vries (KdV) equation is derived for ion-acoustic solitons propagating in a collisionless plasma. This equation is solved in a stationary frame to obtain the expression for soliton phase velocity, soliton width and peak soliton amplitude. It is observed that these quantities are significantly influenced by the relativistic effect, ion temperature, low-temperature electron density and ratio of cold to hot electron temperatures. Many features expected from hot ion theory and two species electron plasmas automatically emerge. The analysis is further extended to higher order nonlinearity and modified Korteweg de-Vries (mKdV) equation is derived. Even though compressive and rarefactive ion-acoustic solitons are obtained, only rarefactive ion-acoustic double layers are obtained in the present investigation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.