Abstract

The mechanism of hydrogen transfers from naphthenes (methylcyclohexane, cyclohexane) or their deuterated derivatives to 1-hexene was specified over model acid zeolite catalysts (HREY or HZSM5). The composition of products is determined by two reactions-cracking and intermolecular hydrogen transfer. The monomolecular cracking reaction proceeds mostly on HZSM-5 zeolite, whereas the bimolecular hydrogen transfer reactions are catalyzed by the wide-pore HREY zeolite. It was found that during the hydrogen transfer from the naphthene molecule (hydrogen donor) to the olefin molecule (hydrogen acceptor) only one hydrogen atom is transferred, whereas the second hydrogen atom comes from the Brønsted acid site of the catalyst.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call