Abstract

The amplitude and frequency modulation of near-wall flow structures by the large-scale motions in outer regions is studied in turbulent channel flows. The proper orthogonal decomposition (POD) method is applied to investigate the interactions between the near-wall motions and the large-scale flow modes of the outer regions based on two datasets from direct numerical simulation of turbulent channel flows at Reynolds numbers of 550–1000. The fluctuations in the fields u+, v+, w+ and Reynolds shear stress −(uv)+ are studied to understand the mechanism of amplitude and frequency modulation of the near-wall structures by the outer large-scale motions. The amplitude modulation coefficient of the Reynolds shear stress is larger than that of the velocity components. The frequency modulation effect has an opposite influence in the spanwise direction compared to the streamwise direction. The streamwise characteristic frequency increases with increasing large-scale velocity. However, the spanwise characteristic frequency exhibits a decreasing trend with increasing large-scale velocity in the near-wall region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.