Abstract

Abstract The rotating distortion generated by upstream wakes or low speed flow cells is a kind of phenomenon in the inlet of middle and rear stages of an axial compressor. Highly complex inflow can obviously affect the performance and the stability of these stages, and is needed to be considered during compressor design. In this paper, a series of unsteady computational fluid dynamics (CFD) simulations is conducted based on a model of a 1-1/2 stage axial compressor to investigate the effects of the distorted inflows near the casing on the compressor performance and the clearance flow. Detailed analysis of the flow field has been performed and interesting results are concluded. The distortions, such as total pressure distortion in circumferential and radial directions, can block the tip region so that the separation loss and the mixing loss in this area are increased, and the efficiency and the total pressure ratio are dropped correspondingly. Besides, the distortions can change the static pressure distribution near the leading edge of the rotor, and make the clearance flow spill out of the rotor edge more easily under near stall (NS) condition, especially in the cases with corotating distortions. This phenomenon can be used to explain why the stall margin is deteriorated with nonuniform inflows.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call