Abstract
Objectives: In this study, MissForest algorithm is used to analyze the impact of missing data. Statistical Analysis: For categorical dataset, MissForest package is used to impute various missing values and tested with missing data incrementally, first with 5% missing attributes of the records from the original dataset then with 10% and so on. Findings: The Proportion of Falsely Classified (PFC) is computed for categorical dataset. Since the good performance of MissForest leads to a value close to zero and bad performance to a value around one, the performance measured for the Nursery dataset is quite good. Application: This approach has good effect when the ratio of missing data is low. Missforest algorithm can be used for numerical or categorical data. The results are improved for continuous data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.