Abstract

Abstract In this paper we present results from a study on the performance of humans and automatic controllers in a general remote navigation task. The remote navigation task is defined as driving a vehicle with nonholonomic kinematic constraints around obstacles toward a goal. We conducted experiments with humans and automatic controllers; in these experiments, the number and type of obstacles as well as the feedback delay was varied. Humans showed significantly more robust performance compared to that of a receding horizon controller. Using the human data, we then train a new human-like receding horizon controller which provides goal convergence when there is no uncertainty. We show that paths produced by the trained human-like controller are similar to human paths and that the trained controller improves robustness compared to the original receding horizon controller.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call