Abstract

This study is addressed at the thermal deformation errors resulting from temperature rise that contribute to 40%-70% of the precision errors in machining at a turning centre, and proposes an economic, accurate, and quick measurement method. It also investigates the thermal error differentials between static idle turning and in the actual cutting environment. The temperature measurement units are intelligent IC temperature sensors with correction circuits. The AID card extracts and transforms data and saves data in the computer files, and the displacement sensor measures the displacement deviation online during cutting. The temperatures and the deviation of thermal drifts so obtained are used to establish the relationship function using multivariable linear regression and nonlinear exponential regression models, respectively. Finally, this paper compares software compensation methods for the thermal-drift relationship. As proven by experiments, the software compensation method can limit the thermal error of a turning centre to within 5 μm. Moreover, the software compensation for the thermal error relationship using a single variable nonlinear exponent regression model can reduce the error by 40% to 60%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.