Abstract

Heat transfer and particle motion relative to the modified chemical vapor deposition process have been studied for general values of the torch speed. Three-dimensional temperature fields have been obtained over the entire cross section of the tube and the effects of tube rotation and localized torch heating in the axial and circumferential directions have been studied. The particle trajectories have been calculated from a formulation that includes the contributions from forced flow, i.e, Poiseuille flow in the axial direction, rigid body rotation about the tube axis, and thermophoretic contributions in the axial, radial, and angular directions. The particle trajectories are helices and are shown to be strongly dependent on the tube rotation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.