Abstract

Healthcare insurance fraud influences not only organizations by overburdening the already fragile healthcare systems, but also individuals in terms of increasing premiums in health insurance and even fatalities. Identifying the behavioral characteristics of fraudulent claims can help shed light on the development of artificial intelligence and machine learning technologies to detect fraud in health information system research. In this paper, a theoretical model of medical insurance fraud identification is proposed, which characterizes the judgment variables of fraud from the three dimensions of time, quantity, and expenses. The model is verified with large-scale, real-world medical records. Our study shows that, in comparison with claims made by normal people, fraudulent claims usually have a greater frequency of hospital visits, and more medical bills, accompanied by higher amounts of medical expenses. An interesting discovery is that the price per bill for fraudulent cases is not statistically different from the normal cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.